732=2x^2+10x+48

Simple and best practice solution for 732=2x^2+10x+48 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 732=2x^2+10x+48 equation:



732=2x^2+10x+48
We move all terms to the left:
732-(2x^2+10x+48)=0
We get rid of parentheses
-2x^2-10x-48+732=0
We add all the numbers together, and all the variables
-2x^2-10x+684=0
a = -2; b = -10; c = +684;
Δ = b2-4ac
Δ = -102-4·(-2)·684
Δ = 5572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5572}=\sqrt{4*1393}=\sqrt{4}*\sqrt{1393}=2\sqrt{1393}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{1393}}{2*-2}=\frac{10-2\sqrt{1393}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{1393}}{2*-2}=\frac{10+2\sqrt{1393}}{-4} $

See similar equations:

| 7(h+2)=98 | | -4/7u=12 | | j+47/8=8 | | 8(m-82)=48 | | 5y/6=-35 | | 1x+4x=9x+1x | | s/8+41=38 | | 7x-85x=67 | | -7x+1=15x+22 | | 14=-7/2w | | -4(x+4)=-8x-24 | | 5/n=2 | | 96=2(m+27) | | -x=6+9 | | -3m=-48 | | f+19/5=5 | | 9d-12=-48 | | y=-3(10)+15 | | h/10+17=22 | | 6k-11=39 | | 4x+2(-3x+15)=10 | | -15/2=-5y | | 38r-19=19 | | 2y+16=44 | | g+18/8=6 | | 24-2k=14 | | 10(g+1)=80 | | -10=x-13 | | 10m=26=26 | | 3.6-2.6x=13.6 | | F/4-1=h | | 7-2x=2(x-4)4 |

Equations solver categories